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1. INTRODUCTION

ABSTRACT

Histopathology images are an essential resource for defining biological compositions or
examining the composition of cells and tissues. The analysis of histopathology images is
also crucial in supporting different class of disease including for rare disease like
Myeloproliferative Neoplasms (MPN). Despite technological advancement in diagnostic
tools to boost procedure in classification of MPN, morphological assessment from
histopathology images acquired by bone marrow trephine (BMT) is remained critical to
confirm MPN subtypes. However, the outcome of assessment at a present is profoundly
challenging due to subjective, poorly reproducible criteria and highly dependent on
pathologist where it caused interobserver variability in the interpretation. To address, this
study developed a classification of classical MPN namely polycythemia vera (PV), essential
thrombocythemia (ET) and primary myelofibrosis (MF) using deep learning approach. Data
collection was undergoing several image augmentations processes to increase features
variability and expand the dataset. The augmented images were then fed into CNN classifier
followed by implementation of cross validation method. Finally, the best classification
model was performed 95.3% of accuracy by using Adamax optimizer. High accuracy and
best output given by proposed model shows significant potential in the deployment of the
classification of MPN and hence facilitates the interpretation and monitoring of samples
beyond conventional approaches.

© 2022 The Authors. Published by Penteract Technology.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

lineages, any atypical cell morphology, blast percentage, degree
of fibrosis and osteosclerosis [2-3].

MPN are characterized by the abnormal proliferation of
mature blood cell lineages. This group of disorders shares many
overlapping characteristics in clinical presentations and
laboratory findings of both reactive and neoplastic conditions.
In the latest WHO classifications 2016 version, bone marrow
morphology is fundamental importance for distinguishing
between MPN subtypes [1]. This includes an assessment of the
cellularity, the extent of differentiation in different blood
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Substantial scientific advances have been achieved
regarding MPNs over the last twenty years, which included
higher accuracy in diagnosis, new risk classifications, and
therapeutic approach updates. ‘The Classification of
Hematopoietic and Lymphoid Tissue Tumours’ of the WHO
demonstrated significant importance in this purpose. The first
document to incorporate genetic information into the diagnostic
algorithms of MPN was published in 2001. The classification
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had its second publication in 2008 and a third one recently, in
2017[4]. In this latest edition, both genetic and molecular
aspects and histopathological features from BMT have been
reviewed and emphasized. Such approaches comprise a crucial
step forward for the diagnostic standardization of MPNs
worldwide.

The developing blood cells in the bone marrow are called
hematopoietic cells. There are three main types of
hematopoietic cells and each produces a different group of
blood cells [5]. Cells from all three lineages, namely erythroid,
granulocytic and megakaryocytic are found in normal BM
biopsy as shown in Figure 1.
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Fig. 1. Normal bone marrow biopsy [5].

The relative incidence of discrimination features according
to WHO morphological criteria generating the histological
pattern in performing BM biopsy specimens. Figure 2 represent
the BM biopsy for ET, PV and MF with the example of
morphology criteria to discriminate the type of diseases.
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Fig. 2. (a) PV patient show a hypercellular marrow as a
result of an increase in myeloid, erythroid, and
megakaryocytic elements [6]. (b) Megakaryocytes in ET
increased in size and number [1]. (c) The fibrotic stage of MF
is marked by the extensive replacement of the normal marrow
stroma by fibrous tissue [7].

Al approach in the classification of MPN was found the
earliest in 2002 using data-mining to extract new decision rules
in the diagnosis of PV [8]. More approaches using Al especially
machine learning to identify MPN subtypes persisted for twenty
years, including feature extraction [8], feature selection [9] and
segmentation of BMT [10]. In more recent study, autoencoder
neural network was applied to identify a feature set of
megakaryocytes cytomorphology to distinguish MPN subtype
with outcome of area under the curve metrics shows the result
of 0.95 [11]. In the following year, study by [12] was
implemented morphological feature extraction to discriminate
the size of blood cells in pre-processing stage for early detection
of MPN. The backpropagation network architecture was used

as a classifier with a learning rate variation to produce the best
accuracy rate of 91.82%.

Recently, deep learning was brought high impact in Al
applications with the promising outcome and has been widely
adopted in various fields [13]. The major advantage of deep
learning is the algorithm is able to automatically extract
meaningful information from the data source in the feature
learning process and classify the disease accordingly [14-16].
Hence, the implementation of deep learning has the advantage
of overcoming traditional handcrafted feature-based methods
that could possibly missed out extraction of important features
in the classification of MPN. To this extent, deep learning was
presented in the classification of 24 types of cancers including
MPN using whole genome sequencing samples in year 2020
[17]. Despite of that, the classification of MPN using BM
morphology as per WHO guidelines are still lacking in
execution. Therefore, a new study can be done using deep
learning to improve the existing method for the classification of
MPN.

2. MATERIALS AND METHODS

The whole study consists of a few stages: data collection
from online resources with labelling validated by the
hematologist, data cleaning stage, and data augmentation to
increase the variety of datasets. Later, learning-based
classification is performed between the control and
reconstructed image complemented by cross validation.
Finally, model evaluation was done to select the best MPN
classification model. Figure 3 was prepared to show the
organizational flow of the study.
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Fig. 3. The flow of the study.

2.1 Data Collection

In the advancement of the digitization era nowadays, the
researcher can share a dataset that is foreseen to benefit the
academic community. Every discovery and new finding can be
shared globally through the digital platform. On top of that,
anyone interested in the subject domain can access the
information and contribute back through the platform. Similar
circumstances are observed in the medical field, including in
the haematology speciality. Three platforms that provide shared
information and a costless downloadable image dataset with
peer review from an expert are chosen as the data source for
data collection. Those three platforms are The American
Society of Hematology Image Bank, PathologyOutlines.com
and Medscape.

Exploratory data analysis (EDA) is an approach to
analyzing datasets to guide the modelling process. For that
purpose, the entire data collected is then reviewed thoroughly
to filter for similar images. A high possibility of the duplicated
image can occur for a similar type of disease due to data sources
coming from an open sharing dataset. Together, the description
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of the image from the data sources also rechecked to confirm
the inclusion and exclusion criteria. Dataset of images are
excluded for evolved MPN and the output was not attributed to
time, period or geographic location.

2.2 Bone Marrow Image Enhancement

At the early stage of model development, bone marrow
image enhancement in the dataset was implemented as an
intention to improve the quality of the original dataset and
identify information content before further processing. Hence,
exploratory data analysis and data cleaning, data augmentation
as well as image reconstruction will be presented in this section.

After data collection and data cleaning process, data
augmentation was applied to the whole dataset as a strategy to
expand the size of a training dataset and enhance the variability
of the images. Transforms include a range of operations from
the field of image manipulation such as shifting, zooms,
rotating flipping and shearing. Augmentation using bone
marrow from ET class as shown in Figure 4 is demonstrated
below to see the effect and suitability of value setting for each
operation. Normal cellular bone marrow with higher number of
hyperlobulated megakaryocytes are common features for ET
was observed. These morphological features to differentiate
subtype of MPN is important to retain in the augmentation
process along with the target to increase the number of the
dataset.

Fig. 4. Sample BMT image augmentation output using
(a) rotate between 10 to 30 degrees, (b) flip horizontal, (c)
shifting between value 0.1 and 0.2, and (d) zoom value
between 0.3 to 0.5.

Following by final data checking, data split was applied by
ratio 70:20:10 for training, validation and test accordingly.
Finally, after data preparation was done, the training process in
the development of a learning algorithm using a deep learning
approach can be initiated in the next stage.

2.3 Development of CNN for MPN Classification

Moving forward to development of deep learning model,
hardware and software part need to be prepared carefully since
the architecture is well known desired to high computational
power. Program will be run in Colab notebook provided by
Google Colaboratory (Colab). The model is scripted in Python
programming language (Python 3 version) using backend
framework of Tensorflow and Keras. Colab is Jupyter notebook
environment providing a runtime fully configured for deep
learning and free of charge access to a robust virtual GPU.

12GB RAM are available with types of GPU vary over time.
GPU often available include Nvidia K80, T4, P4 and P100.

CNN shows promising result in computer vision task for
instance in classification of the image. Therefore, this deep
learning model was proposed to classify the MPN subtypes.
The model is separated into two parts which is feature learning
and classification. Figure 5 shows the complete architecture of
CNN and details of each phase are described below.

\ I )
T T
ture Learning Classification

Fig. 5. CNN architecture for classification of MPN disease.

In feature learning, convolution layers were designed to
extract important features from input images. The bone marrow
image from pre-processing output becoming input for the CNN
model with three channels to signified RGB. The normalization
of the pixel value is applied after parsing the input image as
float numbers. All the numbers are divided by 255 and make
the pixel range between 0 to 1. This early process is important
to produce lower numeric values and after all ease complexity
in the computation of deep learning.

The first few convolutional layers often detect low-level
features such as edges and geometries in the image. In this
model, the first layer of the convolutional layer has a depth of
32 with 3x3 kernel size. The kernel is a filter that is composed
of many weighted matrices defined by their width, height, and
depth. The size of the receptive field of vision is determined by
the dimension of width and height. While the depth is equal to
the number of kernels in the convolutional layer.

Kernels will slide across the image from left-to-right,
taking as input only a subarea of the image. Activation of filters
occurs when the elementwise multiplication results in high,
positive values. This informs the network of the presence of
something in the image, such as an edge or blotch of colour. As
an image passes through more convolutional layers, more
precise details activate the layer's filters. At the end of
convolution, the input image has been transformed into a stack
of feature maps and the size of feature stack size is equal to the
number of filters in the convolutional layer.

As the number of filters in the convolutional layers
increase, the complexity of a dataset is also increase. So does
the possibility of overfitting. To account for this, CNN have
pooling layers after the convolutional layers. Pooling layers
take the stack of feature maps as an input and perform down-
sampling. Down sampling can be achieved with convolutional
layers by changing the stride of the convolution across the
image. Stride is the number of pixels that shifts over the input
matrix and dictates how the pooling kernel moves across the
feature map.

Subsequently, MaxPooling approach is specified in
pooling layer. In MaxPooling, feature map dimensions are
reduced by selecting the maximum value in the kernel window.
The layers will take two input arguments: kernel width and
height, and stride. The kernel starts at the top left corner of a
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feature map, then passes over the pixels to the right at the
defined stride. The pixel with the highest value in the kernel
window will be used as the value for the corresponding node in
the pooling layer. Kernel size 2x2 was specified in the pooling
layer model with stride of 1 and returned the maximum value
by 31x31x32. Later in convolutional blocks, the second
convolution with dimension of 29x29x64 was added. Again,
followed by pooling layer and dimensional was reduced to
14x14x64. As for the third convolutional layer and the network
gets deeper, the architecture adapts to the high-level features.
For instance, the kernel activations could be targeting pixel
intensity and different splotches of colour within the image.
This final convolution layer of 12x12 then flows to Maxpooling
layer to produced 6x6 matrix with similar depth size of 128.

The fully connected layer in the classification part was set
to have a complete connection to all the activations from the
previous layers to get probabilities of the input in a particular
image classification. The last 2-dimensional max-pooled matrix
from the feature learning process was transformed into one
dimensional array in a process called as flatten. Dropout layer
with a value of 0.5 was added after flattening layer to randomly
deactivates some neurons. Dropout is a mask that nullifies the
contribution of some neurons towards the next layer and leaves
unmodified the rest of the neurons. This layer is important to
prevent overfitting the training data. Passing through two fully
connected layers after dropout with depth 512 and 256
respectively, the final layer uses the Softmax activation
function to get probabilities of MPN subtypes.

The hyperparameter tuning is a process to achieve a
balance between underfitting and overfitting to strive for
optimal development of a classification model. The input size
and hyperparameter setting in the architecture of CNN is tune
as variables in Table 1 and the performance of classification
output is recorded for each variable tested. In the deep learning
model, optimizer are algorithms or methods used to change
network attributes such as weights and learning rate to reduce
the losses in the difference between the predicted output and the
actual output. Loss function will act as guide to the terrain,
telling the optimizer if it is moving in the right direction to reach
the global minimum. Five types of optimizers namely Adaptive
Moment Optimization (Adam), Adamax. RMSprop, Stochastic
Gradient Descent (SGD), and Adaptive Gradient (Adagrad) is
tested to find the best suit to the classification model. Other than
that, time taken for training to testing data set will also be
consideration in evaluation of the model.

Table 1. Variables in hyperparameter tuning

Parameter Variables

Input size [32 x 32], [64 x 64], [128 x128]

Batch 30, 50, 80, 100, 120

Optimizer Adam, Adamax, Adagrad, RMSprop, SGD

Each of model developed using variables in Table 1 were
went through cross-validation process. Cross-validation is a
resampling procedure used to evaluate classification models. In
k-fold cross validation, a single parameter called k refers to the
number of groups that a given data sample is to be split into as
shown in Figure 6. When a specific value for k is chosen, it may
be used in place of k in the reference to the model, such as in
this study k=10 and becoming 10-fold cross-validation.

k=10 [CJTrain []Test

Fold 1
Fold 2 {

Fold 10| ‘ |

Fig.6. k-fold cross validation, k=10.

2.4 Evaluation of Models using Performance Metrics

The performance of the selected models from cross
validation is investigate further by using evaluation metrics.
This model evaluation aims to estimate the generalization
accuracy on future unseen or real application data. Type of
evaluation model includes accuracy, visualization of confusion
metrics, precision, recall, F1-score, macro and micro average,
Receiver-Operating Characteristic (ROC) and area under the
ROC curve (AUC).

3. RESULTS AND DISCUSSIONS

In the development of the classification model, deep
learning based using CNN architecture was constructed.
Therefore, output of implementation of hyperparameter
selection and cross validation output will be discussed in this
section. Following the observation of model performance, the
best classification model was chosen and evaluated further
using performance metrics.

The number of batch sizes for observation are 30, 50, 80,
100 and 120. By taking 30 sizes of batch as example, 30
samples of images will be passing at a time to learning
algorithm until eventually all the training data was transited to
complete one single epoch. The process repeated until the end
of number of epochs was setup in the model. Subsequently, 10-
fold cross validation was applied and the output was recorded.
As similar in tuning number of epochs, observation output from
average of accuracy and loss together with time taken was
tabulated for further analysis.

In input size 32x32, highest accuracy was given by Adam
with 90.3% and batch size equal to 100 while for lowest
accuracy was Yielded by Adagrad with 44.8% and batch size
equal to 120 as shown in Table 2. The best performance in
tuning batch size was performed by Adamax in input size 64x64
with 94.6% of accuracy by applying batch size equal to 100.
Lowest accuracy is still given by Adagrad using similar input
size with 57.6% of accuracy and 120 of batch size. Lastly for
input size 128x128, Adamax produced 91.7% of accuracy using
100 as batch size for maximum accuracy achieved in contrast
with Adagrad to formed 61.4% of accuracy for the minimum
using batch size of 120. In overall, Adam shows the best
performance in smallest input size while Adamax outperformed
the other optimizer when larger input size with similar batch
size of 100 was applied. The lowest output consistently given
by Adagrad for all input size at highest batch size of 120.
Meanwhile, RMSprop and SGD shows average performance
regardless input size and batch size tuned in training the model
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Table 2. Average accuracy output from implementation
of k-fold cross validation

Batch Input Average accuracy from cross validation (k=10)
size size Adam RMSprop SGD Adamax Adagrad
30 32x32 87.2%  79.0%  743%  87.2% 58.2%

64x64 87.0%  87.6%  91.8%  94.6% 62.5%
128x128 83.3%  78.9%  856%  90.6% 70.3%
50 32x32 87.5%  823%  79.9%  87.4% 56.9%
64x64 88.8%  88.1%  91.2%  94.3% 62.4%
128x128 83.4%  79.7%  859%  91.1% 69.6%
80 32x32 86.7%  83.9%  67.5%  86.5% 50.9%
64x64 90.5%  88.9%  85.8%  94.4% 60.6%
128x128 74.7%  78.8%  835%  90.0% 66.8%
100 35437 90.3%  82.8%  62.9%  85.9% 46.3%
64x64 91.1%  89.5%  82.0%  94.6% 60.4%
128x128 86.4% 81.2% 83.8% 91.7% 63.6%
120 3543 87.8%  840%  62.8%  86.4% 44.3%
64x64 89.7%  859%  76.6%  93.8% 57.6%
128x128 87.6% 79.6% 78.9% 89.2% 61.4%

Further analysis to compare performance of the optimizer
based on accuracy and size of batch was presented in radar plot
in Figure 7. Adagrad and SGD was plotted towards inside of
the radar reflected by low accuracy output. Contrarily, Adamax
spotted towards most outside of the radar given by high
accuracy output. RMSprop and Adam alternately plotted in
between as the accuracy shows an average performance. From
the plot, clearly best performance from tuning batch size was
given by Adamax for producing the best output among the other
optimizers.

—Adam ——RMSprop

SGD ——Adamax Adagrad

120 50 120

100 80 100 80

(a) Input size 32x 32 (¢) Input size 128 x 128

(b) Input size 64 x 64

Fig. 7. Radar plot for tuning batch size in training model

Decreasing pattern of time taken was observed when batch
size and input size getting larger as observed in Table 3. The
reason is when number of batch size getting higher, more
images will be processed in a batch and hence lesser time will
be taken to complete one epoch. However, RMSprop was
consumed highest time for almost parameter applied unless for
120 of batch size in 128x128 input size. SGD was train faster
despite low accuracy output to indicate the model was not well
converged. The rest optimizer for Adam, Adagrad and Adamax
took almost similar time to train however different approach of
formula in the model cause different performance output.

From the result of hyperparameter tuning and cross
validation, the best output was shown by optimizer Adamax
with input size of 64x64 and batch size is 100. The model was
achieved 94.6% average accuracy from cross validation with
19.6 minutes time taken for training. Consequently, this model
was selected as proposed classification model of MPN. Finally,

the proposed model was evaluated further using performance
metrics as presented in the next section.

Table 3. Time taken by tuning batch size

Time taken (minutes)

Batch Input
size size Adam  RMSprop SGD  Adamax Adagrad
30 32x32 18.1 19.72 17.34 17.93 17.46
64x64 29.49 32.94 23.87 29.73 28.65
128x128 88.72 100.25 84.85 90.45 88.02
50 32x32 12.62 14.09 12.32 12.74 12.4
64x64 23.82 25.94 23.52 24.36 23.86
128x128 79.61 88.27 75.79 80.4 81.79
80 32x32 8.97 9.59 8.77 9.1 8.9
64x64 21.24 22.53 20.62 21.46 20.95
128x128 77.77 82.89 75.98 76.64 75.34
100 32x32 8.14 8.57 7.88 8.13 7.98
64x64 19.52 20.57 19.14 19.6 19.88
128x128 74.73 75.72 71.9 73.72 72.78
120 32x32 7.73 7.9 7.28 7.51 7.36
64x64 18.88 19.88 18.74 19.01 18.79
128x128 74.65 76.33 76.96 74.29 71.77

3.1 Evaluation of Classification Model

Referring to the classification report in Table 5, the
accuracy achieved by the proposed model is 95.3% and slightly
higher than average accuracy from cross validation output with
execution training 2.33 minutes. Further evaluation, the highest
precision was recorded for MF followed by PV and ET.
Inversely, recall output was the best for ET as implied in the
confusion matrix for the highest class correctly classified in the
model. Then, expect for MF as second highest and the least is
PV. Meanwhile, F1-score for this model shows the highest for
MF for the most harmonic output between precision and recall.
Consecutively, ET was found to have higher F1-score
compared to PV. Further evaluation on macro average and
weighted average, identical output for both parameters was
observed and expected for balance dataset. In overall, slightly
higher precision was found compared to recall. However, F1-
score output shows high score to indicate good fit of the model
to be deployed.

Table 5. Classification report for proposed model

Precision Recall F1-Score  Total Images
ET 0.9317 0.9646 0.9479 198
MF 0.9895 0.9495 0.9691 198
PV 0.9397 0.9444 0.9421 198
Accuracy - - 0.9529 594
Macro Avg 0.9536 0.9529 0.9530 594
Weighted Avg 0.9536 0.9529 0.9530 594

Confusion matrix was plotted as shown in Figure 8 to
evaluate performance of the model to classify each class. The
matrix shows that classifier was the best to classify ET class.
However, higher possibility for the model to confuse ET with
PV compared to MF. Second best class for the classifier to
identify is MF with misclassification occurred for PV is higher
than ET. The least correctly classified is PV class. More than
90% of misclassification from PV was wrongly recognize as
ET. This higher percentage could indicate the model has better
separation to differentiate between ET and MF but low ability
to split between ET and PV.
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Tue label

Predicted label

Fig. 8. The output of confusion matrix.

Based on ROC-AUC curve plot as presented in Figure 9,
optimal output for AUC reflected by ROC curve with good
value of probability to distinguish classes available in the
model. The ROC curves for micro average and micro average
as well as the other three classes shows bend towards top left
corner of the graph with similar AUC value 0.99 for class 0
represent for ET and class 2 for PV. Meanwhile, class 1 which
refer to MF class was achieved the best for AUC value 1.00.

1000 ) V
P * I'\v-'-'-'.'b:\-s’-,-‘ﬁ
fo —

0975 FIx e

0950
0925 {[ [=*

.
0.900

0875

TFue Positive Rate

* micro-average ROC curve (area = 0.99)
0850 { &' ® =  macro-average ROC curve (area = 0.99)
:. ROC curve of class 0 (area = 0.99)
0.825 {py ROC curve of class 1 (area = 1.00)

3 ROC curve of class 2 (area = 0.99)

s

0.800 +*

0000 0025 0050 0075 0100 0125 0150 0175 0200
False Positive Rate

Fig. 9. ROC-AUC curve plot for tuning of batch size.

The proposed model yield highest accuracy to classify ET
was found in parallel with incidence rate reported [18].
However, slightly lowered accuracy for MF and PV was
performed from the study has become limitation on
performance of the proposed model. Due to that, combination
of clinical finding such as age, history of thrombosis, presence
of constitutional symptoms, splenomegaly and laboratory
investigations for instance complete blood count beside the
bone marrow images examination are suggested to increase
number of features that feed to the learning algorithm and
reduce limitation on data availability. Therefore, more
information will lead the model development to become more
accurate and robust to classify MPN.

4. CONCLUSION

The proposed model with high accuracy output as 95.3% of
accuracy on test data with 2.33 minutes of execution time for
training. With less than a minute to predict the output, this
advantage gives huge potential to deep learning for deployment
compared to common clinical practice that require multiple
procedures and high time consumption. Apart of successfully
developed using deep learning approach, accomplishment of
this study was also contributed to classification of MPN using
bone marrow image as gold practice based on WHO guideline
which was less reported in previous study.
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