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1. INTRODUCTION 
MPN are characterized by the abnormal proliferation of 

mature blood cell lineages. This group of disorders shares many 
overlapping characteristics in clinical presentations and 
laboratory findings of both reactive and neoplastic conditions. 
In the latest WHO classifications 2016 version, bone marrow 
morphology is fundamental importance for distinguishing 
between MPN subtypes [1]. This includes an assessment of the 
cellularity, the extent of differentiation in different blood 

lineages, any atypical cell morphology, blast percentage, degree 
of fibrosis and osteosclerosis [2-3].  

Substantial scientific advances have been achieved 
regarding MPNs over the last twenty years, which included 
higher accuracy in diagnosis, new risk classifications, and 
therapeutic approach updates. ‘The Classification of 
Hematopoietic and Lymphoid Tissue Tumours’ of the WHO 
demonstrated significant importance in this purpose. The first 
document to incorporate genetic information into the diagnostic 
algorithms of MPN was published in 2001. The classification 

Histopathology images are an essential resource for defining biological compositions or 
examining the composition of cells and tissues. The analysis of histopathology images is 
also crucial in supporting different class of disease including for rare disease like 
Myeloproliferative Neoplasms (MPN). Despite technological advancement in diagnostic 
tools to boost procedure in classification of MPN, morphological assessment from 
histopathology images acquired by bone marrow trephine (BMT) is remained critical to 
confirm MPN subtypes. However, the outcome of assessment at a present is profoundly 
challenging due to subjective, poorly reproducible criteria and highly dependent on 
pathologist where it caused interobserver variability in the interpretation. To address, this 
study developed a classification of classical MPN namely polycythemia vera (PV), essential 
thrombocythemia (ET) and primary myelofibrosis (MF) using deep learning approach. Data 
collection was undergoing several image augmentations processes to increase features 
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followed by implementation of cross validation method. Finally, the best classification 
model was performed 95.3% of accuracy by using Adamax optimizer. High accuracy and 
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had its second publication in 2008 and a third one recently, in 
2017[4]. In this latest edition, both genetic and molecular 
aspects and histopathological features from BMT have been 
reviewed and emphasized. Such approaches comprise a crucial 
step forward for the diagnostic standardization of MPNs 
worldwide.  

The developing blood cells in the bone marrow are called 
hematopoietic cells. There are three main types of 
hematopoietic cells and each produces a different group of 
blood cells [5]. Cells from all three lineages, namely erythroid, 
granulocytic and megakaryocytic are found in normal BM 
biopsy as shown in Figure 1.  

 

Fig. 1. Normal bone marrow biopsy [5]. 

The relative incidence of discrimination features according 
to WHO morphological criteria generating the histological 
pattern in performing BM biopsy specimens. Figure 2 represent 
the BM biopsy for ET, PV and MF with the example of 
morphology criteria to discriminate the type of diseases. 

 

Fig. 2. (a) PV patient show a hypercellular marrow as a 
result of an increase in myeloid, erythroid, and 

megakaryocytic elements [6]. (b) Megakaryocytes in ET 
increased in size and number [1]. (c) The fibrotic stage of MF 
is marked by the extensive replacement of the normal marrow 

stroma by fibrous tissue [7]. 

AI approach in the classification of MPN was found the 
earliest in 2002 using data-mining to extract new decision rules 
in the diagnosis of PV [8]. More approaches using AI especially 
machine learning to identify MPN subtypes persisted for twenty 
years, including feature extraction [8], feature selection [9] and 
segmentation of BMT [10]. In more recent study, autoencoder 
neural network was applied to identify a feature set of 
megakaryocytes cytomorphology to distinguish MPN subtype 
with outcome of area under the curve metrics shows the result 
of 0.95 [11]. In the following year, study by [12] was 
implemented morphological feature extraction to discriminate 
the size of blood cells in pre-processing stage for early detection 
of MPN. The backpropagation network architecture was used 

as a classifier with a learning rate variation to produce the best 
accuracy rate of 91.82%.  

Recently, deep learning was brought high impact in AI 
applications with the promising outcome and has been widely 
adopted in various fields [13]. The major advantage of deep 
learning is the algorithm is able to automatically extract 
meaningful information from the data source in the feature 
learning process and classify the disease accordingly [14-16]. 
Hence, the implementation of deep learning has the advantage 
of overcoming traditional handcrafted feature-based methods 
that could possibly missed out extraction of important features 
in the classification of MPN. To this extent, deep learning was 
presented in the classification of 24 types of cancers including 
MPN using whole genome sequencing samples in year 2020 
[17]. Despite of that, the classification of MPN using BM 
morphology as per WHO guidelines are still lacking in 
execution. Therefore, a new study can be done using deep 
learning to improve the existing method for the classification of 
MPN. 

2. MATERIALS AND METHODS 
The whole study consists of a few stages: data collection 

from online resources with labelling validated by the 
hematologist, data cleaning stage, and data augmentation to 
increase the variety of datasets. Later, learning-based 
classification is performed between the control and 
reconstructed image complemented by cross validation. 
Finally, model evaluation was done to select the best MPN 
classification model. Figure 3 was prepared to show the 
organizational flow of the study. 

  

Fig. 3. The flow of the study. 

2.1 Data Collection 

In the advancement of the digitization era nowadays, the 
researcher can share a dataset that is foreseen to benefit the 
academic community. Every discovery and new finding can be 
shared globally through the digital platform. On top of that, 
anyone interested in the subject domain can access the 
information and contribute back through the platform. Similar 
circumstances are observed in the medical field, including in 
the haematology speciality. Three platforms that provide shared 
information and a costless downloadable image dataset with 
peer review from an expert are chosen as the data source for 
data collection. Those three platforms are The American 
Society of Hematology Image Bank, PathologyOutlines.com 
and Medscape. 

Exploratory data analysis (EDA) is an approach to 
analyzing datasets to guide the modelling process. For that 
purpose, the entire data collected is then reviewed thoroughly 
to filter for similar images. A high possibility of the duplicated 
image can occur for a similar type of disease due to data sources 
coming from an open sharing dataset. Together, the description 
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of the image from the data sources also rechecked to confirm 
the inclusion and exclusion criteria. Dataset of images are 
excluded for evolved MPN and the output was not attributed to 
time, period or geographic location. 

2.2 Bone Marrow Image Enhancement 

At the early stage of model development, bone marrow 
image enhancement in the dataset was implemented as an 
intention to improve the quality of the original dataset and 
identify information content before further processing. Hence, 
exploratory data analysis and data cleaning, data augmentation 
as well as image reconstruction will be presented in this section. 

After data collection and data cleaning process, data 
augmentation was applied to the whole dataset as a strategy to 
expand the size of a training dataset and enhance the variability 
of the images. Transforms include a range of operations from 
the field of image manipulation such as shifting, zooms, 
rotating flipping and shearing. Augmentation using bone 
marrow from ET class as shown in Figure 4 is demonstrated 
below to see the effect and suitability of value setting for each 
operation. Normal cellular bone marrow with higher number of 
hyperlobulated megakaryocytes are common features for ET 
was observed. These morphological features to differentiate 
subtype of MPN is important to retain in the augmentation 
process along with the target to increase the number of the 
dataset. 

 

Fig. 4. Sample BMT image augmentation output using 
(a) rotate between 10 to 30 degrees, (b) flip horizontal, (c) 

shifting between value 0.1 and 0.2, and (d) zoom value 
between 0.3 to 0.5. 

Following by final data checking, data split was applied by 
ratio 70:20:10 for training, validation and test accordingly. 
Finally, after data preparation was done, the training process in 
the development of a learning algorithm using a deep learning 
approach can be initiated in the next stage. 

2.3 Development of CNN for MPN Classification 

Moving forward to development of deep learning model, 
hardware and software part need to be prepared carefully since 
the architecture is well known desired to high computational 
power. Program will be run in Colab notebook provided by 
Google Colaboratory (Colab). The model is scripted in Python 
programming language (Python 3 version) using backend 
framework of Tensorflow and Keras. Colab is Jupyter notebook 
environment providing a runtime fully configured for deep 
learning and free of charge access to a robust virtual GPU. 

12GB RAM are available with types of GPU vary over time. 
GPU often available include Nvidia K80, T4, P4 and P100.  

CNN shows promising result in computer vision task for 
instance in classification of the image. Therefore, this deep 
learning model was proposed to classify the MPN subtypes. 
The model is separated into two parts which is feature learning 
and classification. Figure 5 shows the complete architecture of 
CNN and details of each phase are described below. 

 

Fig. 5. CNN architecture for classification of MPN disease. 

In feature learning, convolution layers were designed to 
extract important features from input images. The bone marrow 
image from pre-processing output becoming input for the CNN 
model with three channels to signified RGB. The normalization 
of the pixel value is applied after parsing the input image as 
float numbers. All the numbers are divided by 255 and make 
the pixel range between 0 to 1. This early process is important 
to produce lower numeric values and after all ease complexity 
in the computation of deep learning.  

The first few convolutional layers often detect low-level 
features such as edges and geometries in the image. In this 
model, the first layer of the convolutional layer has a depth of 
32 with 3x3 kernel size. The kernel is a filter that is composed 
of many weighted matrices defined by their width, height, and 
depth. The size of the receptive field of vision is determined by 
the dimension of width and height. While the depth is equal to 
the number of kernels in the convolutional layer. 

 Kernels will slide across the image from left-to-right, 
taking as input only a subarea of the image. Activation of filters 
occurs when the elementwise multiplication results in high, 
positive values. This informs the network of the presence of 
something in the image, such as an edge or blotch of colour. As 
an image passes through more convolutional layers, more 
precise details activate the layer's filters. At the end of 
convolution, the input image has been transformed into a stack 
of feature maps and the size of feature stack size is equal to the 
number of filters in the convolutional layer. 

As the number of filters in the convolutional layers 
increase, the complexity of a dataset is also increase. So does 
the possibility of overfitting. To account for this, CNN have 
pooling layers after the convolutional layers. Pooling layers 
take the stack of feature maps as an input and perform down-
sampling. Down sampling can be achieved with convolutional 
layers by changing the stride of the convolution across the 
image. Stride is the number of pixels that shifts over the input 
matrix and dictates how the pooling kernel moves across the 
feature map.  

Subsequently, MaxPooling approach is specified in 
pooling layer. In MaxPooling, feature map dimensions are 
reduced by selecting the maximum value in the kernel window. 
The layers will take two input arguments: kernel width and 
height, and stride. The kernel starts at the top left corner of a 
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feature map, then passes over the pixels to the right at the 
defined stride. The pixel with the highest value in the kernel 
window will be used as the value for the corresponding node in 
the pooling layer. Kernel size 2x2 was specified in the pooling 
layer model with stride of 1 and returned the maximum value 
by 31x31x32. Later in convolutional blocks, the second 
convolution with dimension of 29x29x64 was added. Again, 
followed by pooling layer and dimensional was reduced to 
14x14x64. As for the third convolutional layer and the network 
gets deeper, the architecture adapts to the high-level features. 
For instance, the kernel activations could be targeting pixel 
intensity and different splotches of colour within the image.  
This final convolution layer of 12x12 then flows to Maxpooling 
layer to produced 6x6 matrix with similar depth size of 128.  

The fully connected layer in the classification part was set 
to have a complete connection to all the activations from the 
previous layers to get probabilities of the input in a particular 
image classification. The last 2-dimensional max-pooled matrix 
from the feature learning process was transformed into one 
dimensional array in a process called as flatten. Dropout layer 
with a value of 0.5 was added after flattening layer to randomly 
deactivates some neurons. Dropout is a mask that nullifies the 
contribution of some neurons towards the next layer and leaves 
unmodified the rest of the neurons. This layer is important to 
prevent overfitting the training data. Passing through two fully 
connected layers after dropout with depth 512 and 256 
respectively, the final layer uses the Softmax activation 
function to get probabilities of MPN subtypes. 

The hyperparameter tuning is a process to achieve a 
balance between underfitting and overfitting to strive for 
optimal development of a classification model. The input size 
and hyperparameter setting in the architecture of CNN is tune 
as variables in Table 1 and the performance of classification 
output is recorded for each variable tested.  In the deep learning 
model, optimizer are algorithms or methods used to change 
network attributes such as weights and learning rate to reduce 
the losses in the difference between the predicted output and the 
actual output. Loss function will act as guide to the terrain, 
telling the optimizer if it is moving in the right direction to reach 
the global minimum. Five types of optimizers namely Adaptive 
Moment Optimization (Adam), Adamax. RMSprop, Stochastic 
Gradient Descent (SGD), and Adaptive Gradient (Adagrad) is 
tested to find the best suit to the classification model. Other than 
that, time taken for training to testing data set will also be 
consideration in evaluation of the model.  

Table 1. Variables in hyperparameter tuning 

Parameter Variables 

Input size [32 x 32], [64 x 64], [128 x128] 

Batch 30, 50, 80, 100, 120 

Optimizer Adam, Adamax, Adagrad, RMSprop, SGD 

 
Each of model developed using variables in Table 1 were 

went through cross-validation process. Cross-validation is a 
resampling procedure used to evaluate classification models. In 
k-fold cross validation, a single parameter called k refers to the 
number of groups that a given data sample is to be split into as 
shown in Figure 6. When a specific value for k is chosen, it may 
be used in place of k in the reference to the model, such as in 
this study k=10 and becoming 10-fold cross-validation. 

 

 

Fig.6. k-fold cross validation, k=10. 

2.4 Evaluation of Models using Performance Metrics 

The performance of the selected models from cross 
validation is investigate further by using evaluation metrics. 
This model evaluation aims to estimate the generalization 
accuracy on future unseen or real application data. Type of 
evaluation model includes accuracy, visualization of confusion 
metrics, precision, recall, F1-score, macro and micro average, 
Receiver-Operating Characteristic (ROC) and area under the 
ROC curve (AUC).  

3. RESULTS AND DISCUSSIONS 
In the development of the classification model, deep 

learning based using CNN architecture was constructed. 
Therefore, output of implementation of hyperparameter 
selection and cross validation output will be discussed in this 
section. Following the observation of model performance, the 
best classification model was chosen and evaluated further 
using performance metrics. 

The number of batch sizes for observation are 30, 50, 80, 
100 and 120. By taking 30 sizes of batch as example, 30 
samples of images will be passing at a time to learning 
algorithm until eventually all the training data was transited to 
complete one single epoch. The process repeated until the end 
of number of epochs was setup in the model. Subsequently, 10-
fold cross validation was applied and the output was recorded. 
As similar in tuning number of epochs, observation output from 
average of accuracy and loss together with time taken was 
tabulated for further analysis. 

In input size 32x32, highest accuracy was given by Adam 
with 90.3% and batch size equal to 100 while for lowest 
accuracy was yielded by Adagrad with 44.8% and batch size 
equal to 120 as shown in Table 2. The best performance in 
tuning batch size was performed by Adamax in input size 64x64 
with 94.6% of accuracy by applying batch size equal to 100. 
Lowest accuracy is still given by Adagrad using similar input 
size with 57.6% of accuracy and 120 of batch size. Lastly for 
input size 128x128, Adamax produced 91.7% of accuracy using 
100 as batch size for maximum accuracy achieved in contrast 
with Adagrad to formed 61.4% of accuracy for the minimum 
using batch size of 120. In overall, Adam shows the best 
performance in smallest input size while Adamax outperformed 
the other optimizer when larger input size with similar batch 
size of 100 was applied. The lowest output consistently given 
by Adagrad for all input size at highest batch size of 120. 
Meanwhile, RMSprop and SGD shows average performance 
regardless input size and batch size tuned in training the model 
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Table 2. Average accuracy output from implementation 
of k-fold cross validation 

Batch 
size 

Input 
size 

Average accuracy from cross validation (k=10) 

Adam RMSprop SGD Adamax Adagrad 

30 32x32 87.2% 79.0% 74.3% 87.2% 58.2% 

64x64 87.0% 87.6% 91.8% 94.6% 62.5% 

128x128 83.3% 78.9% 85.6% 90.6% 70.3% 

50 32x32 87.5% 82.3% 79.9% 87.4% 56.9% 

64x64 88.8% 88.1% 91.2% 94.3% 62.4% 

128x128 83.4% 79.7% 85.9% 91.1% 69.6% 

80 32x32 86.7% 83.9% 67.5% 86.5% 50.9% 

64x64 90.5% 88.9% 85.8% 94.4% 60.6% 

128x128 74.7% 78.8% 83.5% 90.0% 66.8% 

100 32x32 90.3% 82.8% 62.9% 85.9% 46.3% 

64x64 91.1% 89.5% 82.0% 94.6% 60.4% 

128x128 86.4% 81.2% 83.8% 91.7% 63.6% 

120 32x32 87.8% 84.0% 62.8% 86.4% 44.3% 

64x64 89.7% 85.9% 76.6% 93.8% 57.6% 

128x128 87.6% 79.6% 78.9% 89.2% 61.4% 

Further analysis to compare performance of the optimizer 
based on accuracy and size of batch was presented in radar plot 
in Figure 7. Adagrad and SGD was plotted towards inside of 
the radar reflected by low accuracy output. Contrarily, Adamax 
spotted towards most outside of the radar given by high 
accuracy output. RMSprop and Adam alternately plotted in 
between as the accuracy shows an average performance. From 
the plot, clearly best performance from tuning batch size was 
given by Adamax for producing the best output among the other 
optimizers. 

 
Fig. 7. Radar plot for tuning batch size in training model 

Decreasing pattern of time taken was observed when batch 
size and input size getting larger as observed in Table 3. The 
reason is when number of batch size getting higher, more 
images will be processed in a batch and hence lesser time will 
be taken to complete one epoch. However, RMSprop was 
consumed highest time for almost parameter applied unless for 
120 of batch size in 128x128 input size. SGD was train faster 
despite low accuracy output to indicate the model was not well 
converged. The rest optimizer for Adam, Adagrad and Adamax 
took almost similar time to train however different approach of 
formula in the model cause different performance output. 

From the result of hyperparameter tuning and cross 
validation, the best output was shown by optimizer Adamax 
with input size of 64x64 and batch size is 100. The model was 
achieved 94.6% average accuracy from cross validation with 
19.6 minutes time taken for training. Consequently, this model 
was selected as proposed classification model of MPN. Finally, 

the proposed model was evaluated further using performance 
metrics as presented in the next section. 

Table 3. Time taken by tuning batch size 

Batch 
size 

Input 
size 

Time taken (minutes) 

Adam RMSprop SGD Adamax Adagrad 

30 32x32 18.1 19.72 17.34 17.93 17.46 

64x64 29.49 32.94 23.87 29.73 28.65 

128x128 88.72 100.25 84.85 90.45 88.02 

50 32x32 12.62 14.09 12.32 12.74 12.4 

64x64 23.82 25.94 23.52 24.36 23.86 

128x128 79.61 88.27 75.79 80.4 81.79 

80 32x32 8.97 9.59 8.77 9.1 8.9 

64x64 21.24 22.53 20.62 21.46 20.95 

128x128 77.77 82.89 75.98 76.64 75.34 

100 32x32 8.14 8.57 7.88 8.13 7.98 

64x64 19.52 20.57 19.14 19.6 19.88 

128x128 74.73 75.72 71.9 73.72 72.78 

120 32x32 7.73 7.9 7.28 7.51 7.36 

64x64 18.88 19.88 18.74 19.01 18.79 

128x128 74.65 76.33 76.96 74.29 71.77 

 

3.1 Evaluation of Classification Model 

Referring to the classification report in Table 5, the 
accuracy achieved by the proposed model is 95.3% and slightly 
higher than average accuracy from cross validation output with 
execution training 2.33 minutes. Further evaluation, the highest 
precision was recorded for MF followed by PV and ET. 
Inversely, recall output was the best for ET as implied in the 
confusion matrix for the highest class correctly classified in the 
model. Then, expect for MF as second highest and the least is 
PV. Meanwhile, F1-score for this model shows the highest for 
MF for the most harmonic output between precision and recall. 
Consecutively, ET was found to have higher F1-score 
compared to PV. Further evaluation on macro average and 
weighted average, identical output for both parameters was 
observed and expected for balance dataset. In overall, slightly 
higher precision was found compared to recall. However, F1-
score output shows high score to indicate good fit of the model 
to be deployed. 

Table 5. Classification report for proposed model 
 Precision Recall F1-Score Total Images 

ET 0.9317 0.9646 0.9479 198 
MF 0.9895 0.9495 0.9691 198 
PV 0.9397 0.9444 0.9421 198 

Accuracy - - 0.9529 594 
Macro Avg 0.9536 0.9529 0.9530 594 

Weighted Avg 0.9536 0.9529 0.9530 594 

 

Confusion matrix was plotted as shown in Figure 8 to 
evaluate performance of the model to classify each class. The 
matrix shows that classifier was the best to classify ET class. 
However, higher possibility for the model to confuse ET with 
PV compared to MF. Second best class for the classifier to 
identify is MF with misclassification occurred for PV is higher 
than ET. The least correctly classified is PV class. More than 
90% of misclassification from PV was wrongly recognize as 
ET. This higher percentage could indicate the model has better 
separation to differentiate between ET and MF but low ability 
to split between ET and PV.  



                                        Syamsiah Mashohor et al./ Malaysian Journal of Science and Advanced Technology                                          101 
    

 

Fig. 8. The output of confusion matrix. 

Based on ROC-AUC curve plot as presented in Figure 9, 
optimal output for AUC reflected by ROC curve with good 
value of probability to distinguish classes available in the 
model. The ROC curves for micro average and micro average 
as well as the other three classes shows bend towards top left 
corner of the graph with similar AUC value 0.99 for class 0 
represent for ET and class 2 for PV. Meanwhile, class 1 which 
refer to MF class was achieved the best for AUC value 1.00.  

 

Fig. 9. ROC-AUC curve plot for tuning of batch size. 

The proposed model yield highest accuracy to classify ET 
was found in parallel with incidence rate reported [18]. 
However, slightly lowered accuracy for MF and PV was 
performed from the study has become limitation on 
performance of the proposed model. Due to that, combination 
of clinical finding such as age, history of thrombosis, presence 
of constitutional symptoms, splenomegaly and laboratory 
investigations for instance complete blood count beside the 
bone marrow images examination are suggested to increase 
number of features that feed to the learning algorithm and 
reduce limitation on data availability. Therefore, more 
information will lead the model development to become more 
accurate and robust to classify MPN. 

4. CONCLUSION 
The proposed model with high accuracy output as 95.3% of 

accuracy on test data with 2.33 minutes of execution time for 
training. With less than a minute to predict the output, this 
advantage gives huge potential to deep learning for deployment 
compared to common clinical practice that require multiple 
procedures and high time consumption. Apart of successfully 
developed using deep learning approach, accomplishment of 
this study was also contributed to classification of MPN using 
bone marrow image as gold practice based on WHO guideline 
which was less reported in previous study. 
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