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1. INTRODUCTION 
Fish is a major part of Bangladeshi diets and a key source 

of protein. It’s also a driving force in the country’s economy, 
contributing significantly to exports, job creation, poverty 
reduction, and economic growth [1]. Bangladesh stands as one 
of the world’s top inland fishing nations, earning considerable 
foreign revenue from fish and related exports. Between 1998 
and 2009, inland water capture in Bangladesh doubled, but it 
has since declined to about 1.0 million metric tonnes. This 
decline contrasts with Bangladesh’s strategic location in the 
Ganges-Brahmaputra-Meghna delta, covering 14.4 million 
square kilometers. Fishing employs 1.2 million people in inland 
water and 0.3 million in sea fishing. The sector contributes 
3.8% to the GDP, with fish supplying 55% of Bangladesh’s 
protein intake [2]. Bangladesh’s fisheries sector contributes 
25.30% to the agricultural GDP and 1.5% from fish exports. 

Recent data shows a significant rise in fish production: 47.59 
lakh metric tons in 2021–2022, up from 30.62 lakh in 2010–
2011 and 7.54 lakh in 1983–84. Fish now represents 1.24% of 
export revenue, with over 50 countries involved in fish trade 
[3]. The freshness of commercially accessed fish greatly 
influences its quality. Maintaining freshness post-harvest, often 
conducted near lakes, is crucial [1] . While ice is conventionally 
used for cooling, its effectiveness is limited, leading to 
additional expenses like purchasing stones. Consequently, 
harmful substances, notably formalin, are employed for fish 
preservers [21]. Formalin is a solution of 40% formaldehyde in 
water, is clear and colorless but hazardous to human health. 
Despite its risks, formalin is utilized to improve appearance and 
prolong shelf life, albeit at the expense of safety [4]. 

Detection of formalin in fish through image processing 
remains challenging despite successful fish safety evaluations 

In Bangladesh, where fish is a staple food, ensuring its safety from formalin contamination 
poses a critical challenge due to its perishable nature. This study introduces an intelligent 
application employing digital image processing for the rapid and non-intrusive detection of 
formalin in fish. Leveraging image analysis of fish eyes, the system distinguishes between 
formalin and non-formalin treated fish. The proposed architecture, utilizing EfficientNet-B3 
and VGG-16 models, achieved a 98.05% and 98% accuracy rate in training and validation 
on the dataset. This method offers a swift and accurate means of examination without 
damaging sample preparation, particularly beneficial in large-scale operations where manual 
inspection is impractical. Unlike human senses, digital image processing algorithms remain 
impartial, overcoming human biases and subjective judgments. Challenges persist, such as 
the diverse appearance of fish and external factors like varying illumination, which may 
impact the reliability and effectiveness of image processing programs for formalin detection. 
Nonetheless, this technology holds promise in addressing the pressing need for dependable 
and automated formalin detection in the fish supply chain, ensuring food safety and public 
health. 
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via spectral imaging [5]. Formalin, widely used in various 
industries, is highly detrimental to human health, capable of 
causing severe gastrointestinal damage, respiratory distress, 
and even cancer with as little as 30mL ingestion. Research in 
Bangladesh reports formalin contamination in domestic fish 
markets ranging from 0.5 to 1% [6]. While solutions like 
chemical-based tests exist, their accessibility and costs pose 
challenges. Various studies employ diverse methods like Naïve 
Bayes, CNNs, and deep learning, achieving accuracies ranging 
from 86% to 100% in detecting formalin-treated fish [7], yet 
limitations persist in real-world application and methodology 
weaknesses, necessitating further refinement and accessibility 
enhancement of detection techniques [8]. 

Further, formaldehyde, a naturally occurring compound 
composed of carbon, hydrogen, and oxygen (CH2O), found 
utility in tissue preservation and embalming since its discovery 
in 1893 by Ferdinand Blum [2]. Globally, around 46 billion 
pounds of formaldehyde are produced annually, with 
significant contributions from the US, Asia, and the European 
Union, the latter producing over 3.6 million tons yearly, 
constituting 30% of the world’s production[10]. Detecting 
formalin in fish through image processing remains a 
challenging yet a crucial task, necessitating accuracy and 
robustness. This research aims to tackle this challenge using 
EfficientNet B3 and VGG-16 classifiers within conventional 
neural networks (CNN), chosen for their efficiency and 
adaptability across diverse data. While various methods exist, 
some are costly or demand fixed infrastructure, hindering 
practical implementation. Recent strides have been made in 
identifying formalin-treated fish, yet cost-effectiveness 
alongside accuracy and robustness remains a priority. Our 
approach focuses on a cost-effective, deep-learning solution 
devoid of external GPUs, aiming to identify necessary features 
with minimal computational resources. 

In this situation, detecting formalin in fish is vital for 
health. Recent methods explore behavior monitoring and image 
datasets, focusing on features like gills and eyes. However, 
limited dataset diversity hampers accuracy. Concentrating on 
eye datasets, this study highlights color “variation” but 
acknowledges the need for more diverse images to improve 
accuracy. With limited computational resources, the study aims 
to establish standardized benchmarks for fair comparisons with 
future advancements.The objects of this research are: 

• An in-depth examination of two pre-trained models, 
including a detailed explanation of their operating 
approaches as well as an explanation of their inherent 
advantages and useful method for identifying formalin fish. 

• Developing method can be efficient for further work that 
will provide a low computational power. 

• Understanding a fish quality from an image and through 
this image people can undrstand fresh or non fresh fish. 

• Utilization the performance of two models and compare 
them with the other exsiting models. 

The remainder of the paper is organised as follows: Section 
2 goes over the technique we utilised to conduct this systematic 
review or lierature review, Section 3 goes over the 
methodology, and  some of the most commonly used datasets, 
pre-processing. Section 4 then examines the result analysis of 
this paper. Finally, the conclusion finishes in section 5. 

 

2. LITERATURE REVIEW 

The application of deep learning, especially using the 
EfficintNetB3, VGG16 architecture and analysing fish eye 
images to detect formalin presence is pivotal, especially in 
places like Bangladesh where fish is a staple [9]. Deep 
learning’s adeptness with unstructured data, especially images, 
is crucial across many fields. It enhances images, ex-tracts vital 
information, and ensures food safety by identifying fresh fish. 
However, formalin, a form of formaldehyde, is highly toxic, 
causing severe harm even in small amounts when ingested. It 
poses risks like organ damage, breathing issues, and heightened 
risks for vulnerable groups such as pregnant women and 
children [11]. Simply washing fruits doesn’t eliminate 
formalin, highlighting the need for stringent measures to 
prevent its presence in food. Already there are many solutions 
available for detecting formalin fish. Recently, researchers in 
Bangladesh developed a brand-new technique to find formalin 
in fish. This method uses a chemical-based test that can identify 
formalin within 30 seconds [7]. However, using this kit is a little 
difficult, and many people are unable to use it. Also, formalin 
detection equipment costs roughly $259 in Bangladesh [9]. 

Nag et al. presented a platinum-based electrode that was 
used to detect formaldehyde levels in formalin, a food 
preservative, through voltammetry techniques. The sensor 
showed a broad linear working range from 100 μM to 1000μM, 
with the lowest detection limit of 5 μM. Principal component 
analysis (PCA) and machine learning algorithms achieved a 
100% classification accuracy for different formalin 
concentrations [12]. Roikhanah et al. proposed a mobile 
application utilizing digital image processing and deep 
learning, specifically a Convolutional Neural Network (CNN) 
algorithm with MobileNet architecture, which was developed. 
It focused on assessing fish quality based on the appearance of 
the eyes and gills. Training accuracy for the eye dataset reached 
100%, while for the gill dataset, it reached 98%. Testing on the 
mobile application showed high accuracy, with eye dataset 
accuracy at 100% and gill dataset accuracy at 95% [14]. Yang 
et al. introduced FishSeg, an improved open-source fish 
tracking code designed to address challenges in video-based 
fish tracking. FishSeg utilized a modified Mask R-CNN for 
multi-fish tracking and 3D conversion to flume coordinates. 
The model was trained and validated using datasets from live-
fish tests, with brown trout and European eel as target species. 
Results showed that FishSeg generates more continuous and 
accurate tracks compared to previous methods, with mean 
Average Precisions (mAPs) of 0.837 and 0.876 for trout and 
eel, respectively [15]. Anandhu et al. presented a novel 
approach for identifying fish freshness using VGG-16 CNN 
using transfer learning, leveraging eye, gill, and skin features 
from a dataset of 6000+ real fish samples collected around 
Kerala, resulting in extremely accurate findings when 
compared to ground truth [13]. Mathur et al. proposed a transfer 
learning-based approach using ResNet-50 to address the limited 
dataset issue. By training only, the last few layers of ResNet-
50, the method achieves high classification accuracy without 
data augmentation. Experimental results on large and small 
datasets show validation accuracies of 98.44% and 84.92% 
respectively. The approach also yields high precision, recall, 
and F1 score values, demonstrating its effectiveness in fish 
formalin detection classification [16]. 

 Rafafi et al. addressed the challenge of differentiating 
between fresh and non-fresh fish, crucial for maintaining 
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quality in fish delivery to consumers. Self-organizing maps 
(SOM) are employed as the primary methodology, focusing on 
identifying fresh and non-fresh tilapia using eye image data. 
The process involved obtaining, pre-processing, and feature 
extraction of the data, followed by classification using SOM. 
The system achieved a good accuracy of 85.71% in identifying 
fresh and non-fresh fish based on eye images [17]. Tsai et al. 
introduced a fish freshness identification system using deep 
learning. It proposes an App allowing consumers to upload fish 
images to a cloud database for freshness analysis. The system 
employs a model to provide freshness indicators, aiding 
consumers in assessing the quality of purchased fish accurately 
[18]. Mahata et al. presented a method for identifying fish 
adulteration and assessing quality using a chemo-resistive gas 
sensor and machine learning (ML) techniques. Sensing 
behaviour was examined over time to estimate spoilage level, 
and ML tools achieved 100% accuracy in classifying fresh and 
adulterated fish samples. Regression models quantified storage 
duration and spoilage level. The study highlights the potential 
of nanomaterials combined with ML for accurate food 
adulteration detection [25]. Zhang et al. addressed the challenge 
of detecting adulterated salmon, particularly when frozen-
thawed flesh is sold as fresh. A flexible bioimpedance-based 
non-destructive detection system was designed to monitor 
changes in bioimpedance signals, ambient temperature, and 
relative humidity in real time. An improved machine learning 
classification model, PCA-BOA-SVM, was developed to 
effectively identify frozen-thawed adulterated salmon with a 
high accuracy of 0.9683, precision of 0.9708, recall of 0.9683, 
and F1 score of 0.9679. This work offered a solution to improve 
the authentication of food adulteration in the perishable food 
supply chain, enhancing traceability and sustainability in the 
food industry [26].  

In the study, it is seen that existing methods for formalin 
detection on fish vary in efficiency and usability. While 
Formalin Detection Kits offer accurate results, they aren't 
practical for customers during purchase. CNN and VGG-16, 
although effective, demand extensive data and memory, making 
them time-consuming. To address these limitations, more 
efficient and user-friendly EfficientNetB3 architecture is 
proposed for formalin detection on fish. While various methods 
like CNN and VGG-16 are effective, they demand substantial 
resources and time, highlighting the need for further research to 
develop efficient, user-friendly systems for safe and secure use 
in detecting formalin in fish. 

 

3. MATERIALS AND METHODS 

In this section, we present an overview of our implemented 
methodology. Initially, we collected the dataset and proceeded 
to pre-process it, segmenting it into three folders: train, validate, 
and test. After careful consideration, we selected three deep 
learning-based models suitable for our task. Notably, pre-
trained deep learning models, are widely favoured for transfer 
learning due to their structural efficiency and speed. For our 
study, we opted to utilize VGG16 as the first model for training 
and testing and finallyEfficientNetB3. These models were 
chosen for their proficiency in image categorization and 
efficiency compared to others.  The schematic representation of 
the system architecture for formalin detection on fish is visually 
depicted in the accompanying figure 1. It commences with data 
collection, followed by partitioning the dataset into two 

segments, typically allocating 70% for training and 20% and 
10% for validation. Subsequently, the selected DL models are 
trained either from scratch or through transfer learning 
techniques. The training and validation plots are scrutinized to 
gauge the significance of the models. Performance metrics are 
then employed to evaluate image classification, specifically in 
identifying crop diseases and pests. Finally, visualization 
techniques are applied to aid in image classification. This 
structured approach ensures a systematic progression from data 
pre-processing to model evaluation, ultimately aiming for 
effective classification outcomes. 

3.1 EfficientNetB3 

EfficientNet is a neural network architecture created in 
2019 by Tan and Quoc V. Le of Google AI [23]. It's designed 
to deliver cutting-edge performance while remaining 
computationally efficient. It boosts performance and efficiency 
by increasing depth, width, and resolution on a regular basis. 
This balanced scaling the method enhances accuracy while 
decreasing processing demands, yielding a robust but resource-
efficient neural network architecture. Figure 2 described the 
architecture of EfficirntNet-B3. 

 

Fig. 1. The image presents the workflow of our proposed 
method. 

The convolutional network, EfficientNetB3, introduces a 
revolutionary scaling technique that alters network depth, 
breadth, and resolution parameters uniformly. To determine 
how several basic aspects of network scalability relate to one 
another, this model uses a fixed resource restriction. This 
process might be used to determine the proper scaling 
coefficients for each dimension that has to be adjusted. Using 
these established criteria as a basis, the basic network 
dimensions were scaled accordingly to the necessary size [22]. 
With improved accuracy achieved through parameter tuning, 
EfficientNet-B3 stands out. EfficientNet-B3 accommodates 
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devices with limited resources by maintaining a sophisticated 
equilibrium between precision and effectiveness. Its smaller 
form reduces the need for processing and storage. It provides 
adaptability across a range of applications on simple 
integration, guaranteeing efficient multitasking and superior 
transferability. 

3.2 VGG-16 

VGG16 is a CNN architecture created by the Visual 
Graphics Group (VGG) at the University of Oxford. It is a VGG 
family model and is named after the "VGG" group. VGG16 
stands out for its depth and simplicity, with 16 weight layers, 
13 convolutional layers, and 3 fully linked layers. The internal 
structure of VGG16 is depicted in the figure.  It excelled in the 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) in 2014.VGG has several versions, including 
VGG11, VGG13, VGG16, and VGG19 [24]. It is a popular 
picture 3 categorization model due to its simplicity and 
efficacy. Figure 3 described the architecture of VGG-16. 

 

 

Fig. 2. The image presents the architecture of EfficientNetB3 

VGG-16, often known as VGGNet, is a convolutional 
neural network (CNN) model with 16 layers that is essential for 
object recognition and classification. Prominent for having all 
of the necessary convolutional neural network properties 
included in one complete package, VGG16 has 138 million 
parameters in its network. With an impressive 92.7% accuracy 
rate in classifying 1000 photos in various categories, it has 
become a widely used image classification technology that may 
be easily implemented using transfer learning. Utilizing pre-
existing, usable VGG-16 models increase the viability of using 
transfer learning. This is particularly useful in scenarios when 

there is a dearth of labelled data since the model may leverage 
knowledge gained from training on large datasets. VGG-16's 
simple architecture makes it easier to deploy and integrate into 
image-processing workflows and frameworks. Furthermore, 
VGG-16 is now a widely accepted standard in the field of image 
processing, providing a generally accepted framework for 
evaluating and analysing new approaches. In light of the 
aforementioned advantages, the decision to employ the 
EfficientNetB3 model and VGG-16 has been made for the 
purposes of this paper. 

 

Fig. 3. The image presents the architecture of VGG-16 

3.3 Dataset 

The Fish Eye dataset from Kaggle was the source of the 
dataset used in this paper's experiments. Using this dataset, 
these two models were trained to enable the prediction of fish 
samples classified into formalin-free and formalin-based 
classifications, and its method was thoroughly evaluated and 
improved.  
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Fig. 4. Data distribution of fresh non-fresh fishes 

The distribution of fresh samples (50.3%) and non-fresh 
samples (49.7%) was observed in the dataset used for algorithm 
assessment and training figure 4 can illustrate it. A thorough 
evaluation of these two algorithms' performance over a variety 
of dataset categories is guaranteed by this well-balanced 
composition. Figure 5 described few examples of our dataset. 
In this dataset we can see fresh and non-fresh fish’s eyes. Fresh 
fish can be distinguished by certain characteristics. Their pupils 
are black, contrasting with clear corneas. The gills of fresh fish 
appear dark red and lack the secretion of mucus. When touched, 
the flesh feels elastic and dense. Additionally, the mucus on the 
skin's surface is clear and colourless. On the other hand, non-
fresh fish exhibits noticeable signs. The pupils of their eyes 
appear cloudy, while the gills turn brown. The texture of the 
meat becomes soft, and a bad starts to emanate from the fish. 
Non-fresh fish’s eyes colour is fade than actual fish. Sometimes 
in their eye sight the colour is yellow and fade white and grey. 
There’ll be some sport in the fish’s eye. 

 

Fig. 5. Image sample of fresh and non-fresh fish 

 

4. RESULTS AND ANALYSIS 

The implementation of EfficientNetB3 and VGG-16 was 
conducted on a Windows 10 x64 platform featuring an Intel 
Core i7 CPU operating at 2.5GHz, 8GB of RAM, and no 
external graphics processing unit. This hardware configuration 

served as the experimental environment for our dataset 
evaluations. The datasets were systematically partitioned into 
three subsets: training (70%), testing (20%), and validation 
(10%). A detailed breakdown of the data split is showed in 
Table 1. 

Table 1. A comprehensive description of Training, Testing, 
and Validation. 

Dataset  Training Testing Validation 

Kaggle 70% 20% 10% 

 

Finding the accuracy, precision, recall, f-measure, and 
error rate on each difficult dataset was done in order to assess 
the performance of our suggested method. The simplest way to 
express accuracy, which is the natural way to gauge 
performance, is as a ratio between correctly predicted 
discoveries and all finds. Precision described the ratio of 
accurately predicted positive finds to all predicted positive 
findings. The error rate is the ratio of incorrectly anticipated 
finds to all findings. False positive predictions are abbreviated 
as FP and True positive predictions as TP. True positive 
predictions and false positive predictions are denoted by the 
letters TN and FN, respectively. Table 2 and 3 contains the 
precision, recall, and f-score for both models. 

Table 2. Precision, recall, f1-score for EfficientNetB3 

Precision Recall F1-Score 

97.6% 98.02% 98.60% 

 

Fig. 6. The accuracy rate of the training dataset (EfficientNet-

B3) 
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Fig. 7. The accuracy rate of the training dataset (VGG-16) 

Table 3. Precision, recall, f1-score for VGG16 

Precision Recall F1-Score 

98.56% 98.92% 99.20% 

 

The result of training curve accuracy at 1.0 validation 
accuracy reached 0.9 based on this figure. The validation 
accuracy approached one in the most recent period. The more 
epochs that are added, the closer the value of the training and 
validation process is to 1.0. If the training and validation 
accuracy values decrease, the trained algorithm cannot execute 
the classification correctly. 

 

Fig. 8. The error rate of the training dataset (EfficientNet-B3) 

Table 4. Accuracy for EfficientNetB3 and VGG16 

EfficientNetB3 VGG16 

99.05% 99.9% 

According to Figure, the training accuracy and validation 
training curves are close to 0.0 as epoch 40 increases. The 
training error value hit 0 and the validation accuracy value 
reached 0.1 in the most recent epoch. 

 

Fig. 9. The Error rate of the training dataset (VGG-16) 

The confusion matrix contains information on the 
comparison of the system's classification results with the actual 
classification results. According to the figure, the confusion 
matrix from the fish eye dataset test result and the formalin eye 
dataset result showed that the predictions were accurate 138 and 
incorrect 0. The confusion matrix result for formalin-added fish 
is accurate 122 and incorrect 8. The confusion matrix of our 
result contains in figure 10. 

 

 

Fig. 10. Confusion Matrix of our results  

On the Kaggle dataset with less computational capacity, 
our model performed well. To identify formalin in fish both 
EfficientNetB3 and VGG-16 performed well and reached the 
best accuracy. Figure 6,7 describe the accuracy rate of both 
models and 7,8 describe the error rate of both models. Both 
architecture EfficientNetB3 and VGG-16 predict very nicely 
with an accuracy of 99.05% and 99.9% The error rate for both 
an architecture EfficientNetB3 and VGG-16 is 0.95% and 
.10%. Table 4 contains the accuracy results of both models. 
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5. CONCLUSION 

Fish is a staple food for many Bangladeshis, but the 
presence of formalin in fish poses a significant health risk. 
Identifying formalin-free fish is crucial for consumer safety, yet 
distinguishing it during purchase is challenging. To address this 
issue, we have proposed a Deep Learning model, a subset of 
Machine Learning, aimed at detecting formalin in fish. This 
innovative approach utilizes eye images of fish to determine the 
presence of formalin with remarkable accuracy. Our model, 
particularly designed with the VGG-16 architecture, achieves 
an outstanding accuracy rate of 99.9%. This surpasses existing 
models which often struggle with errors and inaccuracies in 
identifying formalin in fish. By leveraging advanced 
computational techniques, our model not only enhances the 
accuracy of detection but also provides a reliable tool for 
consumers to ensure the safety of their fish purchases. The 
implementation of our proposed model holds great promise in 
alleviating the concerns surrounding formalin-contaminated 
fish. Empowering consumers with the ability to discern 
formalin-free fish will not only safeguard public health but also 
foster trust and confidence in the seafood market. Ultimately, 
our model contributes to reducing human suffering by 
mitigating the risks associated with formalin consumption. 
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